Este curso ha cerrado la fecha de inscripción

Duración

6 semanas (36 horas de estudio estimadas)

Fecha de inicio

Curso abierto para consulta

Valoración de curso

Promedio (36 Votos)

Descripción del curso

Gracias por tu interés. Aunque este MOOC ya se realizó, si te inscribes podrás acceder a los contenidos más importantes y a los vídeos. Sin embargo, no podrás realizar ninguna de las actividades ni te podrás certificar. Cuando esté disponible una nueva edición podrás inscribirte para que obtengas la experiencia completa de un MOOC de Miríadax.

Los objetivos de este curso son, por un lado introducir el concepto de caos determinista, poniendo de manifiesto el cambio de perspectiva que éste ha introducido en el pensamiento científico, y por otro mostrar como a partir de estas ideas puede entenderse de una manera unificada la complejidad de diferentes sistemas no lineales que se explican en el curso, entendiendo cómo se comportan al variar sus condiciones iniciales y/o sus parámetros. En el curso se presentan diferentes experimentos y programas de simulación que ayudan a mostrar y comprender los fenómenos presentados. Se pretende que el alumno tome conciencia de que en la naturaleza hay muchos sistemas caóticos y que realice experimentos que presenten este comportamiento con el fin de que sea capaz de analizarlos y caracterizarlos.

Módulos del curso

MÓDULO 0. Presentación. MÓDULO 0. Presentación.

Fecha de inicio: 5/03/18 0:00

Fecha de fin: 31/12/99 1:00

MÓDULO 1. Introducción al concepto de Caos. MÓDULO 1. Introducción al concepto de Caos.

Fecha de inicio: 5/03/18 0:00

Fecha de fin: 31/12/99 1:00

MÓDULO 2. Sistemas Dinámicos. MÓDULO 2. Sistemas Dinámicos.

Fecha de inicio: 12/03/18 0:00

Fecha de fin: 31/12/99 1:00

MÓDULO 3. Diagrama de Bifurcaciones, Universalidad e indicadores de Caos. MÓDULO 3. Diagrama de Bifurcaciones, Universalidad e indicadores de Caos.

Fecha de inicio: 19/03/18 0:00

Fecha de fin: 31/12/99 1:00

MÓDULO 4. Atractores. MÓDULO 4. Atractores.

Fecha de inicio: 26/03/18 0:00

Fecha de fin: 31/12/99 1:00

MÓDULO 5. Fractales MÓDULO 5. Fractales

Fecha de inicio: 2/04/18 0:00

Fecha de fin: 31/12/99 1:00

MÓDULO 6. Ejemplos y Aplicaciones de Sistemas con Caos. MÓDULO 6. Ejemplos y Aplicaciones de Sistemas con Caos.

Fecha de inicio: 9/04/18 0:00

Fecha de fin: 31/12/99 1:00

Conocimientos

Conocimientos básicos de matemáticas.

Badges y certificados

A través de simulaciones por odenador y experimentos de sistemas de diversa naturaleza, se introduce el concepto de caos determinista, poniendo de manifiesto su ubicuidad y el cambio de paradigma que el Caos supuso en la Ciencia. Se presenta el efecto mariposa, es decir, la sensibilidad extrema a las condiciones iniciales y los conceptos básicos de sistemas dinámicos no lineales, atractores y fractales...

  • karma
    Certificado de Participación: « Caos y Dinámica No Lineal»

    Certificado de Participación: « Caos y Dinámica No Lineal»

    badge

    ¿Cómo se consigue?

    Se consigue cuando el alumno ha superado, al menos, un promedio del 75% de los módulos del curso. Este promedio se calcula dividiendo la suma del % obtenido en cada uno de los módulos, entre el número de módulos del curso. Reconoce la participación del alumno en el mismo. El certificado puede descargarse como un diploma en formato PDF y como un badge, que además, se muestra en la plataforma y puede exportarse a "Mozilla Open”

    Descripción

    A través de simulaciones por odenador y experimentos de sistemas de diversa naturaleza, se introduce el concepto de caos determinista, poniendo de manifiesto su ubicuidad y el cambio de paradigma que el Caos supuso en la Ciencia. Se presenta el efecto mariposa, es decir, la sensibilidad extrema a las condiciones iniciales y los conceptos básicos de sistemas dinámicos no lineales, atractores y fractales...

  • Certificado de Superación: «Caos y Dinámica No Lineal»

    badge

    A través de simulaciones por odenador y experimentos de sistemas de diversa naturaleza, se introduce el concepto de caos determinista, poniendo de manifiesto su ubicuidad y el cambio de paradigma que el Caos supuso en la Ciencia. Se presenta el efecto mariposa, es decir, la sensibilidad extrema a las condiciones iniciales y los conceptos básicos de sistemas dinámicos no lineales, atractores y fractales...